Zhao Yang

zhaouiuc@illinois.edu

165 Altgeld Hall,

1409 W. Green Street Urbana, IL 61801

home
research
teaching


Current work:

  1. Z. Yang and K. Zumbrun, Phase-asymptotic stability of Lax or undercompressive viscous shock waves under L1∩ Hs4 perturbations.
  2. Z. Yang and K. Zumbrun, Numerical Evans function methods for computation of stability boundaries for periodic coefficient control.
  3. M. Johnson, L. M. Rodrigues, Z. Yang, and K. Zumbrun, Spectral stability of the Richard-Gavrilyuk roll-waves.
  4. Z. Yang and K. Zumbrun, Existence and Stability of hydraulic shock profiles of Richard-Gavrilyuk Model.
  5. D. Marchesin, A. Mailybaev, Z. Yang, and K. Zumbrun, Stability of degenerate traveling waves of 2 × 2 balance system.

Publications:

  1. V. Hur and Z. Yang, Unstable Stokes waves, preprint, arxiv.
  2. S. Jung, Z. Yang, and K. Zumbrun, Stability of strong detonation waves for Majda's model with general ignition functions, Quarterly of Applied Mathematics,link.
  3. A. Sukhtayev, Z. Yang, and K. Zumbrun, Spectral stabilty of hydraulic shock profiles, Physica D, link.
  4. Z. Yang and K. Zumbrun, Stability of hydraulic shock profiles, Archive for Rational Mechanics and Analysis, link.
  5. Z. Yang and K. Zumbrun, Convergence as period goes to infinity of spectra of periodic traveling waves toward essential spectra of a homoclinic limit, Journal de Mathématiques Pures et Appliquées, link.
  6. M. Johnson, P. Noble, L. M. Rodrigues, Z. Yang, and K. Zumbrun, Spectral stability of inviscid roll-waves, Comm. Math. Phys., link.

Collaborators: